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These notes are provided as a revision/overview of the lectures. Any expressions/formulae
that I expect you to have memorised for the examination are highlighted with a surround-
ing box.

Definition: An “inertial frame of reference” is a coordinate system in which Newton’s
laws hold.

1 Motion relative to a translating origin

Suppose that we have an inertial frame of reference centred about an origin O. By the
definition of the inertial frame, we know that a particle P of constant mass m and position
vector r(t) (relative to O) satisfies Newton’s second law:

mr̈ = F ,

where F is the resultant force acting upon P .

r̄(t)

r(t)

O′

O

b(t)

P

Figure 1: O is an origin in an inertial frame of reference, whereas O′ is moving relative to
O.

Now suppose there is another coordinate system that is defined relative to a moving

origin O′ as in figure 1. Let’s further suppose that the position of O′ relative to O is b(t)
and that the position vector of P relative to O′ is r̄(t). We therefore have the relationship

r(t) = b(t) + r̄(t) ,

and therefore Newton’s second law reduces to

m
d2r̄

dt2
= F −mb̈ .
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Thus, relative to the moving frame of reference centred at O′, the particle feels an effective
force of

F −mb̈ .

Newton’s second law clearly only holds in the moving coordinate system if

b̈ = 0 ,

that is, ifO′ is moving at constant velocity relative toO. We refer to the moving coordinate
system as a “non-inertial frame of reference” whenever b̈ 6= 0.

1.1 Example: ‘zero-g’ motion in a non-inertial frame of refer-

ence

Quite often a particle will be referred to as being ‘weightless’ when in fact it is still being
acted upon by a gravitational acceleration. This is commonly the case in non-inertial
frames of reference where the ‘observer’ and the particle are both in free fall.

For example, consider a particle P of mass m in a uniform gravitational field. The
force acting on P comes from its weight F = −mgk in the obvious notation. Clearly if our
frame of reference (i.e., O′) is also moving in the k direction with the same acceleration
−g (m/s/s), then we have

b̈ = −gk .

As above let’s denote the position vector of P relative to O′ as r̄. Thus, in the non-
inertial frame of reference the appropriate equation of motion is

m
d2r̄

dt2
= F −mb̈ = −mgk −m(−gk) = 0 ,

and we may view the particle in this frame as (effectively) being free from any external
force.

2 Two-dimensional rotating frames of reference

Instead of a coordinate system that is translating, we now consider the more complicated
case of a rotating coordinate system. Consider two coordinate systems as shown in figure
2:

• A Cartesian coordinate system {i, j, k} centred at an origin O in an inertial frame
of reference.

• A second Cartesian coordinate system {e
1
, e

2
, e

3
} that is also centred at the origin

O, but which is rotating relative to {i, j, k}.

If we assume that the coordinate system {e
1
, e

2
, e

3
} is rotating about the k axis, with

e
3
= k and a rotation angle of θ(t), then we have (from figure 2):

e
1

= cos θi+ sin θj ,

e
2

= − sin θi+ cos θj ,

e
3

= k .
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Figure 2: A Cartesian coordinate system i, j, k (k out of the plane) relative to an origin
O, together with a second coordinate system {e

1
, e

2
, e

3
} that is rotated by an angle θ(t)

about the axis e
3
= k.

We’re interested in the rate of change of the basis vectors {e
1
, e

2
, e

3
}, which is easy to

determine via

ė
1
=

de
1

dt
=

de
1

dθ
θ̇ = θ̇(− sin θ i+ cos θ j) ,

ė
2
=

de
2

dt
=

de
2

dθ
θ̇ = θ̇(− cos θ i− sin θ j) ,

ė
3
= 0 .

We note that the above expressions are all equivalent to

ė
1

= θ̇k ∧ e1 , (1)

ė
2

= θ̇k ∧ e2 , (2)

ė
3

= θ̇k ∧ e3 = 0 . (3)

This is in fact a special case of a general result that we state next.

3 The angular frequency vector

The results of (1)–(3) generalise to (we do not prove it here)

ėi = ω ∧ ei , (4)

for i = 1, 2, 3, where ω is the ‘angular frequency vector’. The magnitude ω = |ω| is then
the rotation rate (or just ‘angular frequency’) of the rotating coordinate system, whist
ω/ω is a unit vector that defines the axis of rotation. In the simpler case of (1)–(3) we
simply had ω = θ̇k because the rotation rate was θ̇ and the axis was k.

4 Velocity relative to a rotating frame

Suppose that we have an inertial frame of reference (labelled S). Further we suppose
that we wish to use an alternative frame of reference S ′ that rotates relative to S with an
angular frequency vector of ω.
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Relative to the rotating frame S ′, we know the position of the particle:

r =
3
∑

i=1

xiei ,

that is, in terms of three coordinates x1,2,3 in the directions of the three basis vectors e
1,2,3.

The velocity relative to the inertial frame of reference is then the rate of change of the
position vector, so

ṙ

∣

∣

∣

∣

S

=
dr

dt
=

d

dt

(

3
∑

i=1

xiei

)

.

However, we have to be careful (as in Chapter 1, section 5), because in the frame S the
three basis vectors e

1,2,3 change with time as the coordinate system rotates. Therefore

ṙ

∣

∣

∣

∣

S

=
3
∑

i=1

(ẋiei + xiėi) ,

but using (4) we can write this as

ṙ

∣

∣

∣

∣

S

=
3
∑

i=1

(ẋiei + xiω ∧ ei) ,

=
dr

dt

∣

∣

∣

∣

S′

+ ω ∧

3
∑

i=1

xiei ,

= ṙ

∣

∣

∣

∣

S′

+ ω ∧ r .

The simply says that the velocity relative to the frame S is equal to the velocity relative
to the rotating frame S ′ plus an extra contribution due to the rotation of S ′ relative to S.

5 A particle in a rotating frame of reference

As in the preceding section we suppose that S ′ is rotating relative to S with (constant)
angular frequency vector ω, where S is an inertial frame. We know that (by definition of
an inertial frame) the equation of motion for a particle P of mass m in the frame S is

m
d2r

dt2

∣

∣

∣

∣

S

= F . (5)

Suppose we prefer to describe the problem relative to the rotating frame S ′, then
what is the equation of motion of P ? To determine the correct equation we need the
acceleration in the rotating frame.

We know from the previous section that the velocity is related by

dr

dt

∣

∣

∣

∣

S

=
dr

dt

∣

∣

∣

∣

S′

+ ω ∧ r .
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However we need the acceleration, so differentiating this again (as before) we find that

d2r

dt2

∣

∣

∣

∣

S

=
d2r

dt2

∣

∣

∣

∣

S′

+ 2ω ∧ ṙ

∣

∣

∣

∣

S′

+ ω ∧ (ω ∧ r) .

Substituting this into (5) we obtain

m
d2r

dt2

∣

∣

∣

∣

S′

= F − 2mω ∧ ṙ

∣

∣

∣

∣

S′

−mω ∧ (ω ∧ r) ,

where the additional acceleration terms that arise from the rotation of S ′ are moved to
the right-hand side of the equation.

So in a rotating frame S ′ we simply apply Newton’s second law as usual, but include
two additional “fictitious forces”. We give these ‘fictitious forces’ some names:

• −2mω ∧ ṙ

∣

∣

∣

∣

S′

is the “Coriolis force”,

• −mω ∧ (ω ∧ r) is the “centrifugal force”,

but they are purely a consequence of the rotating frame of reference.

5.1 Example: Plane polars and a rotating frame

Suppose we consider a particle P of mass m that moves in a rotating frame of reference.
The angular frequency vector of the rotating frame is ω = ωk, for some constant ω.

You are given that, in the rotating frame of reference P moves in a plane with position
vector r relative to an origin O on the axis of rotation where

r = rr̂ ,

and r̂ is the usual unit vector that points radially outwards from the axis of rotation.
(Aside: from here we will drop the cumbersome notation of O′, ṙ|S′ and just revert to

our previous notation, recognising that this is a non-inertial frame that leads to additional
(fictitious) forces.)

Question: Simplify the RHS of the vector equation of motion (in the non-inertial
frame)

mr̈ = F − 2mω ∧ ṙ −mω ∧ (ω ∧ r) ,

Answer: To simplify things we need to determine the components of the Coriolis and
centrifugal forces. This is easy to do as we are told that ω = ωk, r = rr̂ and we know
from Chapter 1, section 5 that

ṙ = ṙr̂ + rθ̇θ̂ .

The Coriolis force is then

−2mω ∧ ṙ = −2mωk ∧ (ṙr̂ + rθ̇θ̂) = −2mωṙθ̂ + 2mωrθ̇r̂ ,

whilst the centrifugal force is

−mω ∧ (ω ∧ r) = −mrω2k ∧ (k ∧ r̂) = −mrω2k ∧ θ̂ = mrω2r̂ .
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The RHS of the equation of motion is therefore

F − 2mωṙθ̂ + 2mωrθ̇r̂ +mrω2r̂ .

ExtraQuestion: Give two scalar equations for the polar coordinates r and θ in the case
F = 0.

Answer: Using Chapter 1, section 5 for the acceleration in polar basis vectors, leads
to an equation of motion in the form

m
(

(r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂
)

= −2mṙωθ̂ + 2mωrθ̇r̂ +mrω2r̂, ,

after setting F = 0 (as there is no force acting).
The vector equation therefore simplifies to two scalar equations:

r̈ − rθ̇2 = 2ωrθ̇ + rω2 ,

or equivalently

r̈ = rω2

(

1 +
θ̇

ω

)

2

, (6a)

and

2ṙθ̇ + rθ̈ = −2ṙω . (6b)

Note: It is possible to simplify these further (left as an exercise).
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