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FAQ

1. Can I ignore these online notes?

If you attend all the lectures and problem/feedback classes, then you have all the
material and these notes are not needed.

2. If I have these notes, can I skip the classes?

I advise against it. My past experience is that students that do not attend the
lectures/supervisions can often perform poorly, even if they obtain the material
that was delivered in the classes.

3. How does the material in these notes differ from that delivered in the lectures?

When writing on the blackboard I will de-emphasise the written text and emphasise
the detail and reasoning behind the mathematical steps. In these notes I reverse
this approach, being a little more discursive with less of the algebra shown. There
will be some parts of the online notes where I will include additional material that
will not be discussed (in much detail) in the lectures; this will be clearly noted by
‘extra’ in the margin.

4. Is the sequence/numbering consistent between the online notes and the lectures?

Yes, the sections and chapters are all consistent (individual equation numbers are
not).

5. Can I ignore any material marked as ‘extra’ if I use the online notes when revising
for the final exam?

Yes, but looking through the extra material may still help your understanding of
other parts of the course.

6. Do I have to memorise a lot of formulae?

No. This course is not testing how good your memory is. Any expressions/formulae
that I expect you to have memorised for the examination are highlighted with a
surrounding box – this is a very small number and they should be entirely obvious
by the time you have worked through all the problems.

Obviously there are many ‘applications’ of calculus, however in this course we will
concentrate specifically on the problems that primarily gave rise to the development of
calculus. Our emphasis will be on problems of ‘mechanics’, and more specifically we will
mostly concentrate on single-‘particle’ dynamics. However, by the end of this course we
should hopefully have covered some of the bigger topics of pre-20th century science.
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1 Introduction.

This course makes no assumptions that you have taken any previous ‘mechanics’ course
before. As such, we’ll start with some very basic definitions that many will already be
familiar with:

• A particle has a position in space and a mass (see below), but it does not have
any size or shape. It is a single point in space; a point-mass.

• In this course we will spend most of our time discussing the motion of a particle (or
sometimes, a system of particles) and will not discuss the motion of bodies of finite
size. Since a particle consists of a single point in space we can describe its path, as
time varies, using a single vector that is measured relative to some fixed origin of a
coordinate system. Throughout this course we will use r(t) to denote the position
of a particle relative to an origin at a given time t. Let’s assume for the moment
that we can pick such an ‘origin’, but we will return to reconsider this issue towards
the end of the course.

In a Cartesian coordinate system relative to a fixed origin O, with unit basis vectors
i, j, k, the position vector can be written in the form

r(t) = x(t)i+ y(t)j + z(t)k ;

where x(t), y(t), z(t) are the three coordinates needed to identify the particle in a
three-dimensional space at any given value of time t. Note that the distance of the
particle from O is then defined to be the scalar quantity |r|.

NoteYou MUST always distinguish between vectors and scalars in your written work.
You will definitely lose marks in any examination for failing to keep a consistent
notation. I will actively deduct marks from anyone that not only forgets to distin-
guish vectors from scalars, but goes one step further and incorrectly treats vectors
as though they are scalars.

• The velocity of a particle with position vector r(t) is defined to be the vector

v(t) = ṙ(t) .

In component form relative to Cartesian coordinate system this is

ṙ(t) = ẋ(t)i+ ẏ(t)j + ż(t)k .

Velocity is measured in meters per second (m/s). The speed of a particle is a scalar
quantity, defined to be the magnitude of the velocity, that is |v|.

• The acceleration of a particle with position vector r(t) is defined to be the vector

a(t) = v̇(t) = r̈(t) .

In component form relative to a Cartesian coordinate system this is

r̈(t) = ẍ(t)i+ ÿ(t)j + z̈(t)k .

Acceleration is measured in meters per second per second (m/s2).
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• A vector quantity that will be important later is the mass times the vector velocity

p = mv ,

for a particle of mass m. This is defined to be the linear momentum of the
particle.

• Mass is an intrinsic property of matter (measured in kilograms, kg) related to a
particle’s reluctance to being accelerated. This is a rather vague definition of mass,
and for good reason, the issue is more subtle than you might think.

ExtraOur basis for the concept of mass arises from an empirical law1, the ‘law of mutual
interaction’.

Suppose that two particles P1 and P2 interact only with eachother (by some unspec-
ified mechanism), such that P1 induces an acceleration a21 in P2 and P2 induces an
acceleration a12 in P1. Then the accelerations a21 and a12 are opposite in direction
and parallel to the line joining P1 and P2. Furthermore, the ratio of |a21|/|a12| is
a constant that is independent of the nature of the interaction. In other words,
it doesn’t matter what the mechanism of attraction is (a spring, electric charge or
even a bit of elastic) the ratio of the two accelerations is the same.

This observation allows us to define a useful property of the P1,2 system that is
independent of what causes the accelerations or how the particles are moving. We
call this property the (inertial) mass ratio of the two particles:

m1

m2

=
|a21|
|a12|

.

If we can define a mass ratio for any pair of particles, then we can define the
(inertial) mass for any individual particle by simply choosing one object as the
reference mass. Our reference mass is actually a block of platinum-iridium stored
at the International Bureau of Weights and Measures in France. It is this reference
block that is the ‘kilogram’.

This is not quite the full story. There is an extra requirement that our definition of
mass must be consistent if we now introduce an intermediate third particle. For a
more detailed discussion see the book ‘Classical Mechanics’ by R.D. Gregory, p.55.

• It is worth briefly leaping ahead of schedule here to note that weight is commonly
confused with mass but is a ‘force’ (measured in Newtons, N) caused by the gravi-
tational attraction of a body (eg. you) to some other typically larger body (eg. the
Earth). We have not defined what a ‘force’ is yet, again the issue is more subtle
than you might think. Similarly we postpone a discussion of gravitational attraction
until the end of this chapter.

1that is, something that is held to be always true on the basis of all known experiments/observations;
it is not provable in a mathematical sense.
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Example 1.1: Motion under constant acceleration

In a Cartesian coordinate system with basis vectors {i, j, k}, a particle P is at the origin
r = 0 at time t = 0 and has an initial velocity Ui. P is subjected to an acceleration
a(t) = ai for t ≥ 0, where a is a constant.

Question: Find the position of P at time t.

Answer: The question is asking us to find r(t); the position vector of P . We are told
the acceleration, and we know the connection between acceleration and position is

a(t) = r̈(t) .

So the question, despite it’s mechanics context, is really about solving a very simple ODE:

r̈(t) = ai .

This is a second-order, constant coefficient, ODE and therefore requires two initial con-
ditions. The question provides the two conditions:

r(t = 0) = 0 , ṙ(t = 0) = Ui .

There are a number of ways one can solve this simple system. The obvious way is
to just integrate twice, however this is a vector equation whereas all the examples you
have seen from the first half of the course were scalar equations. Fortunately this is not
a problem.

Method 1

The long way of solving this would be to use a component form for the position vector

r(t) = x(t)i+ y(t)j + z(t)k ,

then we obtain three scalar ODEs on taking each component separately:

ẍ = a , ÿ = 0 , z̈ = 0 .

Integrating once
ẋ = at+ c1 , ẏ = c2 , ż = c3 ,

where c1,2,3 are constants of integration. We know the initial velocity is

ṙ(t = 0) = ẋ(0)i+ ẏ(0)j + ż(0)k = Ui ,

which shows that c1 = U , c2 = 0, c3 = 0.
Integrating again

x =
a

2
t2 + Ut + d1 , y = d2 , z = d3 ,

where d1,2,3 are constants of integration. We know the initial position is

r(t = 0) = x(0)i+ y(0)j + z(0)k ,

which shows that d1,2,3 = 0.
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So the position of P is

r(t) = x(t)i+ y(t)j + z(t)k =
(a

2
t2 + Ut

)

i .

Method 2

The above method is rather long-winded. Rather than splitting into component parts,
we can just treat the vector ODE in the obvious manner. Starting from

r̈(t) = ai ,

we integrate once to find
ṙ(t) = ati+ c ,

where the only difference now is that c is a constant vector of integration. Using the initial
condition ṙ(0) = Ui shows that

c = Ui .

Integrating again:

r(t) =
a

2
t2i+ Uti + d ,

where d is a constant vector of integration. Again using the initial condition r(0) = 0
shows that d = 0, so the position of P is

r(t) =
(a

2
t2 + Ut

)

i ,

as before.

NoteIf you have done a mechanics course before, you may recognise the solutions above as
being a vector form of one of the ‘SUVAT’ equations for particle motion under constant
acceleration. Please do NOT memorise the ‘SUVAT’ equations, they only apply to this
special case and as you can see integrating twice is hardly a challenge. You should
prioritise understanding rather than attempting to memorise material; this is not a course
about committing random things to memory.

2 Forces

For a particle P , we will define the force acting on P to be the product of the mass of P
(as defined above) and the vector acceleration of P . The force is therefore a vector (that
is, a quantity with direction and magnitude) whose line of action is through the point P .

We will treat forces as vectors, with the usual associated definitions:

• The resultant of a system of forces is just their vector sum.

• Like any other vector, we can decompose forces into component parts.

• Like any other vector, the magnitude of a force F is the scalar quantity |F |.

It is very important that you are comfortable in using vectors. Now is a good time to
review your notes from semester 1.

ExtraWe have side-stepped some rather subtle issues here. We have defined the concept of
a force using Newton’s second law (which you saw briefly in the first half of the course
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and we will meet again in chapter 2). However this is not sufficient for us to treat them
as vectors, because vectors also have other algebraic properties (that is, we have rules for
vector algebra).

There is however another empirical law, the ‘law of multiple interactions’. This law is
based upon the observation that, if particles P0, ..., PN are interacting only with eachother,
then the acceleration of P0 is

a0 = a01 + a02 + · · ·+ a0N ,

where a0i is the acceleration induced in P0 by its pairwise interaction with Pi for i =
1, ..., N . In other words, the acceleration induced in P0 is observed to be precisely the
vector sum of the individual accelerations that arise by considering each particle individ-
ually. If we can sum the accelerations using the usual rules for vector addition, then we
can similarly sum forces using the definition above.

Example 2.1: The resultant of two forces as a vector sum

Question: A particle P is acted upon by two co-planar forces F 1 and F 2 (which are not
co-linear). Sketch a diagram showing the resultant force, F , acting on P .

Answer: P F 1

F 2

F = F 1 + F 2The resultant is defined to be simply
the linear sum F = F 1 + F 2,
so the diagram is:

Example 2.2: Finding the component of a force in a particular

direction

Question: Find the component of the force F = (3, 2,−1) in the direction of the unit
vector t̂ = (1/

√
2,−1/

√
2, 0).

Answer: The component of a force F in a direction t̂ can be found by drawing a force
triangle, or by using the dot product.

|F |

t̂
θ
|F |

cos
θ

F t̂ = F · t̂ = |F | cos θ,
where θ is the angle between F and t̂,

and t̂ is a unit vector.

Note that the dot product will only provide the component if t̂ (in this notation) is a
unit vector, that is, |̂t| = 1.
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For this question we do not know θ (the angle between F and t̂), so the most convenient
method is to use the dot product:

F t̂ = (3, 2,−1) · (1/
√
2,−1/

√
2, 0) =

1√
2
(3− 2) =

1√
2
.

Example 2.3: Finding the components of the weight of a particle

sitting on a slope

Question: A particle P rests on a plane that is at angle α to the horizontal (the direction
given by the unit vector i) and experiences a force of magnitude W downwards (the
direction given by the unit vector −j). Resolve the force into components parallel and
perpendicular to the plane.

Answer: In any of these types of questions, the first thing to do is to draw a sketch of
the problem, see Figure 1.
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i

j

t̂

ŝ

α
F = −Wj

Figure 1: A particle rests on a plane inclined at an angle α to the horizontal and experi-
ences a downward force of magnitude W . The unit vectors normal and tangential to the
plane are denoted by ŝ and t̂, respectively.

The straightforward method is to find expressions for vectors parallel and perpendic-
ular to the plane in terms of the Cartesian base vectors and then take dot products. We
have

t̂ = cosα i+ sinα j and ŝ = − sinα i+ cosα j.

The components of the force parallel and perpendicular to the plane are then

F · t̂ =
(

0
−W

)

·
(

cosα
sinα

)

= −W sinα ,

and

F · ŝ =
(

0
−W

)

·
(

− sinα
cosα

)

= −W cosα.

Thus,
F = −W sinα t̂−W cosα ŝ .

An alternative approach is to draw a force triangle and decompose F into the perpen-
dicular and parallel components directly.
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3 Moments of forces

If a force F acts through a point P with position vector r (relative to origin O) then we
define the moment about O to be the quantity

LO = r ∧ F .

Note• The subscript O indicates that r is the position relative to the origin O, that is, it
is the ‘moment about the point O’.

• The LO notation used for the moment of a force varies across textbooks, bear this
in mind if you are looking for discussions of this topic elsewhere.

• You may have seen moments discussed before, but as a scalar that is ‘force times
perpendicular distance’. The vector definition here is consistent with that scalar
definition.

• Some textbooks may use the phrase ‘torque’ rather than ‘moment’.

If we have N particles, with position vectors ri, each acted upon by a different force,
F i, then the total moment for the system (about O) is defined to be the vector sum of
the individual moments for each particle:

LO =
i=N
∑

i=1

ri ∧ F i .

Example 3.1: Computing the moment of a force

Question: The force F = 4j acts through the point r = 3i in a Cartesian coordinate
system with unit basis vectors {i, j, k}. Find the moment of the force about the origin.

Answer: By definition the moment is

LO = r ∧ F =

∣

∣

∣

∣

∣

∣

i j k
3 0 0
0 4 0

∣

∣

∣

∣

∣

∣

= 12k .

4 Systems in equilibrium

If a system of particles is each acted upon by a force, then we say that the system is in
equilibrium if and only if two conditions are met:

1. The resultant (ie. the vector sum) of all the forces must be zero.

2. The total moment about any point in space must be zero.
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If we define the ‘any point’ as A, which has a position vector of A relative to the origin
O, then the moment of the system about A is

LA =
i=N
∑

i=1

(ri − A) ∧ F i .

However, we do not need to test every such A, because:

LA =
i=N
∑

i=1

ri ∧ F i −
i=N
∑

i=1

A ∧ F i =
i=N
∑

i=1

ri ∧ F i −A ∧

i=N
∑

i=1

F i ,

=

i=N
∑

i=1

ri ∧ F i = LO

provided that the resultant of the forces is zero. In other words, to test for equilibrium,
we first find the resultant force, if that is zero, then we can test the moment about any
convenient point in space. If that moment is zero then all moments are also zero and the
system is in equilibrium.

5 Other coordinate systems: polar basis vectors

We will use the polar basis vectors discussed here in later sections of the course, so make
sure you understand the notation/concepts in the first supervision class.

If we can describe the motion of a particle in a plane using a Cartesian coordinate
system (relative to an origin O) with (unit) basis vectors i, j then life is fairly simple
because i, j are constants. Therefore if we have a particle P with a position vector of
r(t) = x(t)i+ y(t)j, then differentiating to find the velocity is easy because

v(t) =
dr(t)

dt
= ẋ(t)i+ ẏ(t)j .

This just follows from the product rule. For example for the first component:

d

dt
(x(t)i) =

dx(t)

dt
i+ x(t)

di

dt
= ẋ(t)i ,

because
di

dt
= 0 ,

as i is independent of time. Similarly for the second component.
However, in some problems (eg. planetary motion) we prefer to use the (unit) polar

basis vectors r̂ and θ̂ (see figure 2). In this coordinate system the position vector of P is

r = rr̂ .

NoteYou may find this notation confusing at first, but remember:

• r is the position vector of P relative to O, just as before.
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r̂

θ̂

i

j r

x(t)

y(t)
P

Figure 2: Using polar basis vectors to describe the motion of a particle P in a plane,
relative to an origin O. In some cases it is more convenient to use r = rr̂ where r = |r|
instead of the Cartesian form r = xi+ yj. Although this is often more convenient, there
is a penalty we have to pay when it comes to evaluating the velocity or acceleration; they
are made more complicated by the fact that now r̂ and θ̂ change as P moves in the plane.

• r̂ is a unit vector in the direction of OP . (We use the hat notation to emphasise
that these are unit vectors).

• r is a scalar, and is simply how far away from O the particle P is. Because r̂ is a
unit vector (i.e., |r̂| = 1), |r| = r.

At first sight this may look like you are defining a point in a plane using just one scalar
coordinate, r, however this is not true, as there is a θ coordinate that is being implicitly
used to define the basis vector r̂. The unit vector r̂ always points in the direction of OP ,
so as P moves with time, so does r̂.

This coordinate system makes life easier in some respects, but the penalty we have to
pay is that

dr(t)

dt
=

d

dt
(r(t)r̂) = ṙ(t)r̂ + r(t)

dr̂

dt
,

where now r̂ varies as P moves, so the last term in this expression no longer vanishes as
it did in the Cartesian case. However, we can determine this last term (as well as the
corresponding term for θ̂) by noting that

r̂ = cos θ i+ sin θ j ,

θ̂ = − sin θ i+ cos θ j ,

so we can differentiate using the chain rule:

dr̂

dt
=

dr̂

dθ

dθ

dt
= (− sin θ i+ cos θ j) θ̇ = θ̇θ̂ ,

dθ̂

dt
=

dθ̂

dθ

dθ

dt
= (− cos θ i− sin θ j) θ̇ = −θ̇r̂ .
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The resulting expression for the velocity is therefore

v = ṙr̂ + rθ̇θ̂ , (1)

and repeating this process (see Example sheet 1) provides an expression for the accelera-
tion

a =
(

r̈ − rθ̇2
)

r̂ +
(

2ṙθ̇ + rθ̈
)

θ̂ . (2)

Example 5.1: Uniform circular motion

Question: A particle P moves anticlockwise around a circle of unit radius at constant
speed such that it performs one complete revolution every second. Find the acceleration
of P .

Answer: We choose to represent the motion of the particle in plane polar coordinates
with an origin at the centre of the particle’s circular path. The position of the particle is
given by r = r r̂, where r = 1. The particle turns through an angle of 2π radians every
second, so θ = 2πt and

r = 1 ⇒ ṙ = r̈ = 0 and θ = 2πt ⇒ θ̇ = 2π ⇒ θ̈ = 0.

Using equation (2) the acceleration is given by

�
�
�
�

a = −r (2π)2 r̂ = −4π2r̂,

ṙ = 2πθ̂
r̈ = −4π2r̂

which implies that uniform circular motion at constant speed leads to a constant acceler-
ation towards the centre of rotation.

6 Modelling assumptions

Often we want a particle to be geometrically constrained to lie on a slope/table, be
connected to a point by a string, move along a wire etc. To achieve this we impose a
force of constraint. The size and direction of this force is whatever it needs to be to
impose the constraint. For example, for a particle that is stationary on a rigid table, we
need a force of constraint equal and opposite to the particles weight in order to keep it
at the same level (ie. on the table). The force in this case is called a normal reaction
force.

Example 6.1: A particle at rest on a horizontal plane

Question: A particle of weight −Wj is in equilibrium on a horizontal plane. What is
the normal reaction force?

Answer: For the particle to be in equilibrium we need a zero resultant force, in which
case there must be a normal reaction force N = +Wj, as shown in figure 3(a).
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i

i

j

j
Nj

−Wj−Wj

α

F t̂
Nŝ(a) (b)

Figure 3: (a) A particle of weight −Wj resting on a horizontal plane. (b) A particle of
weight −Wj resting on a sloped plane (of angle α to the horizontal), with a frictional
force.

Example 6.2: A particle at rest on a sloped plane with friction

Question: A particle of weight −Wj is in equilibrium on a frictional plane that is at
an angle of α to the horizontal. Find the normal reaction force, Nŝ, and the tangential
frictional force, F t̂, as shown in figure 3(b).

Answer: To compare coefficients of the vector forces we can either rewrite ŝ and t̂ in
terms of i and j or vice versa. Let’s choose to decompose the weight into components
parallel and perpendicular to the plane:

−Wj = −W sinα t̂−W cosα ŝ .

Then for the particle to be in equilibrium we need the resultant force to be zero

Nŝ+ F t̂−Wj = Nŝ+ F t̂−W sinα t̂−W cosα ŝ = 0 .

So

N = W cosα , F = W sinα .

Note that the moment is trivially zero since all forces are acting through the same point.

7 Gravitational fields

Newton’s law of gravitational attraction (see figure 4) states that, for a pair of particles
of mass m1 and m2, the force on mass m2 due to m1 is

F = −Gm1m2

r2
r̂ ,

where the position of m2 relative to m1 is r = rr̂ in the usual notation. Here G is a
constant of proportionality called the “universal gravitational constant”. Clearly for the
force on m1 due to m2 we have the same magnitude, but in the opposite direction (as we
simply reverse r̂).

12



m1

m2

r

Figure 4: Newton’s law of gravitational attraction tells us what the attractive force is
between two particles of mass m1 and m2, where the position vector of mass m2 relative
to m1 is r.

Uniform local gravity

If r does not vary significantly during a particle’s motion, then we can approximate
the terms Gm1/r

2 as a single constant.
For example, suppose we have a particle P of mass m2 = m in the gravitational field

of the Earth, whose mass we will denote by m1 = E. Furthermore, suppose the distance
of P from the centre of the Earth is r = R + h, where R is the radius of the Earth and
h is the height of the particle above the surface of the Earth. From Newton’s law of
gravitational attraction, the magnitude of the attractive force can be approximated if h
is much smaller than R:

GEm

(R + h)2
≈ GE

R2
m = mg ,

if we define the constant g = GE/R2. We then say that P moves in a ‘uniform gravita-
tional field’, where for terrestrial problems we can evaluate g ≈ 9.81m/s2.

Suppose we have a system of particles Pi with masses mi and positions ri, where
i = 1, 2, · · · , N in a uniform gravitational field of strength g. As the gravitational field
is uniform each particle experiences a force −migk, where k is the upwards pointing unit
vector. Then the resultant force for the system is

F =
N
∑

i=1

−migk = −gk

(

N
∑

i=1

mi

)

= −Mgk ,

where

M =
N
∑

i=1

mi ,

is the total mass of the system. The total moment about O (as defined in section 3) is

LO =

N
∑

i=1

ri ∧ F i =

N
∑

i=1

ri ∧ (−migk) = −g

(

N
∑

i=1

miri ∧ k

)

.
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Hence we define the centre of mass of the system to be

R =
1

M

N
∑

i=1

miri ,

and the moment of the system is then

LO = −gMR ∧ k = R ∧ (−Mgk) = R ∧ F ,

which is the usual definition of the moment for a single particle. Hence uniform gravita-
tional fields have a great deal of simplicity, because we can treat a system of particles as
being equivalent to a single particle of mass M existing at the centre of mass R.

Example 7.1: Moments in uniform gravity

Question: There are three particles of mass m1 = 2, m2 = 1, m3 = 2 positioned at
r1 = (1, 0, 0), r2 = (−1, 0, 0) and r3 = (−1, 1, 0) respectively, in a Cartesian coordinate
system relative to a fixed origin O, with unit basis vectors i, j, k. If the particles experience
a uniform gravitational force F i = −migj for some constant g, find the total moment
about the origin of the system.

Answer: There are two approaches we can take, one way is to compute the total moment
from the definition:

LO =
3
∑

i=1

ri ∧ F i = · · · = (0, 0, g) .

This requires three cross products, so for more than a few particles such a method can
get rather long.

However, based on the results above, we know that an alternative is to compute the
centre of mass and treat the system as a single particle of mass M = m1 +m2 +m3 = 5
placed at that point.

The centre of mass is, by definition,

R =
1

M

3
∑

i=1

miri =
1

5
(−1, 2, 0) ,

so the moment about the origin must be

LO = R ∧ F = R ∧

3
∑

i=1

F i =
1

5
(−1, 2, 0) ∧ (0,−5g, 0) = (0, 0, g) .

Example 7.2: (Non-uniform) gravitational attraction to a pair of
particles

Question: Two fixed particles A and B, both of mass M , attract a particle C of mass m.
The particles A and B have position vectors ±aj, whilst particle C is at xi in the usual
notation for a Cartesian coordinate system; see figure 5. Find the total force exerted on
C by the presence of A and B.

14



i

j

a

a

A

B

Cx

F

R

θ

Figure 5: Attraction of a particle C to the two particles A and B.

Answer: We know from Newton’s law of gravitational attraction that each of A and B
attract C with a force of magnitude mMG/R2, where

R =
√
a2 + x2 ,

is the separation distance and G is the gravitational constant. The vector force experi-
enced by C is therefore

F =
mMG

R2

~CA

| ~CA|
+

mMG

R2

~CB

| ~CB|
,

=
mMG

R2

{

(− cos θ i+ sin θ j) + (− cos θ i− sin θ j)
}

,

= −2mMG cos θ

R2
i ,

where ~CA and ~CB are vectors in the directions of C to A and C to B respectively. The
resultant force is parallel to the vector i, which rather obviously had to be the case as the
system is symmetric about the x-axis.

As cos θ = x/R we can rewrite this result as

F = −2mMG
x

(a2 + x2)3/2
i .

Note that when C is very far away from A and B, that is when x ≫ a, we can
approximate the force by the leading-order expression

F ≈ −2mMG

x2
i .

So in this limit the system A and B acts like a single particle of mass 2M situated at the
origin.
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Figure 6: Attraction of a particle P to a continuous distribution of mass of length 2a. E
is a ‘small’ element of the rod and R is the separation distance between E and P .

Example 7.3: Attraction to a continuous distribution of mass

Question: A solid uniform rod of length 2a and mass M is placed along the y-axis such
that its centre is at the origin of a Cartesian coordinate system; see figure 6. A particle
P has a position vector xi and is of mass m. Find the gravitational attraction of P to
the rod.

Answer: The total mass of the rod is M and this is distributed uniformly throughout
its length. Hence, for a small element E of the rod, the mass of that single element is

M

(

dy

2a

)

,

where dy is the length of the element E. Hence the gravitational attraction exerted on
the particle P by the presence of the element E is

m
[

M
(

dy
2a

)]

G

R2

~PE

| ~PE|
,

where R is the separation distance between P and E.
To compute the total attractive force, we must now integrate over all such infinitesimal

elements in the rod:

F = −
{
∫ y=a

y=−a

mMG

2aR2
cos θ dy

}

i ;

again the symmetry of the problem leads to a resultant force along the line of symmetry.
To compute this integral we must be careful because, as we move through the rod

integrating over each element, the separation distance R and angle θ will vary with y; in
fact

R =
√

x2 + y2 , cos θ =
x

R
.
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Hence

F = −mMGi

2a

∫ y=+a

y=−a

x

(x2 + y2)3/2
dy ,

which is a standard integral. (I don’t expect you to have it memorised, but it is easy to
look it up!). This leads to

F = −mMGi

x2

(

1 +
a2

x2

)−1/2

.

Again we may note that, if x ≫ a, then |F | ≈ mMG/x2, so the rod acts like a single
particle of mass M placed at the centre/origin O.

Extra

Example 7.4: Attraction to a spherical distribution of mass

O

R

(m)

P
b

r

a
θ φ

dθ

Figure 7: Attraction of a particle P of mass m to a continuous (spherical) distribution
of mass of radius a and total mass M . Here we show an inner spherical shell of radius
r and a slice through that shell at constant θ (shown as dotted lines); these sections are
conceptually important in the integration over all parts of the sphere.

Question: Consider a spherical body of radius a, total mass M and constant density ρ;
where ρ = M/V with V being the volume of the sphere. Determine the force exerted on
a particle P placed at a radial distance b from the centre of the sphere, where b > a as
shown in figure 7.

Answer: Suppose we consider an inner spherical shell of thickness dr, then divide that
shell into ‘slices’ (at constant θ) each of ‘width’ of rdθ; see figure 7. The mass of the slice
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is its volume times the density ρ:

Mslice = ρ 2πr sin θ rdθ dr ,

where r sin θ is the radius of the slice.
By symmetry we can anticipate that the force on P is directed towards the centre of

the sphere, and the magnitude of the force of attraction to the sliced section is

Fslice =
mG

R2
Mslice cosφ,

where the cos φ arises because we need the component of the force along the axis of
symmetry.

The magnitude of the total attractive force is an integral over all such sliced sections.
We therefore must integrate from r = 0 to r = a (all spherical shells) and for each shell
integrate from θ = 0 to θ = π (all slices within the shell). The magnitude of the total
force of attraction is therefore

F =

∫ r=a

r=0

∫ θ=π

θ=0

mG

R2
cosφ ρ 2πr2 sin θdθ dr .

We can rewrite this as

F = 2πmG

∫ r=a

r=0

ρr2
∫ θ=π

θ=0

cosφ sin θ

R2
dθ dr .

To tackle the θ integral we note that R2 = (r sin θ)2 + (b− r cos θ)2 = r2 − 2br cos θ + b2,
and

cosφ =
b− r cos θ

R
,

so that

F = 2πmG

∫ r=a

r=0

ρr2
∫ θ=π

θ=0

b− r cos θ

R3
sin θdθ dr .

We can change the θ integration to being over R by noting that

2R
dR

dθ
= 2rb sin θ ,

with limits of R = b− r to R = b+ r. Finally, on noting that,

b− r cos θ =
2b

2b
(b− r cos θ) =

2b2 − 2rb cos θ

2b
=

b2 + (b2 − 2rb cos θ)

2b
=

b2 +R2 − r2

2b
,

we can rewrite the force as

F = 2πmG

∫ r=a

r=0

ρr2
∫ R=b+r

R=b−r

1

2rb2

(

b2 − r2

R2
+ 1

)

dR dr .

The inner integral is now easy, leaving us with

F =
4πmG

b2

∫ r=a

r=0

ρr2dr =

(

4

3
πa3ρ

)

mG

b2
=

MmG

b2
,
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as 4πa3/3 = V is the volume of the sphere and V ρ = M is the total mass of the sphere.
Therefore, the gravtiational attraction of a particle to a spherically distributed mass is

exactly the same as if the entire mass of the sphere was concentrated at its centre. Unlike
examples 7.2 and 7.3, there is no approximation in this case, we only require that b > a,
not b ≫ a. In fact, we could repeat the analysis above with a radially varying density
ρ = ρ(r) and the result would still hold.

If b < a then the inner integral in the computation above becomes zero (left as an
exercise!), which shows that there is no gravitational field inside a spherical shell. This
is not an intuitive result, and is a consequence of the inverse-square dependence in New-
ton’s law of gravitation. Hence, if you were to tunnel into a spherical planet, only the
mass ‘below’ you would contribute to the gravitational force that you feel. As a direct
consequence (another exercise!), this shows that the gravitational force acting on P is a
maximum when b = a, and for b < a it decreases linearly with decreasing b if the sphere
has a constant density; being zero when b = 0.
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