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Figure 13. Numerical results for steady states near to Ŵe = 1, σ = 10.

At leading order, after substitution of the above expansions, the governing boundary-
layer equations are reduced to

U2
0 + V0U

′
0 = U ′′0 , (3.24)

2U0W0 + V0W
′
0 = W ′′

0 , (3.25)

V0B
′
0 +U0(B0 − 1) = σ−1B′′0 , (3.26)

2U0 + V ′0 = 0, (3.27)

with boundary conditions U0 = V0 = 0, W0 = 1 on ξ = 0. There is a simple solution
to this system, namely

V0 = −Aξ2 , U0 = Aξ , B0 = 1. (3.28)

At this stage we have used a notation similar to that employed by Bodonyi (1975)
(obviously the constant A is unrelated to that used in the preceding sections of
this paper); however, there is a sign change in the coordinate since the appropriate
domain is ξ ∈ [0,−∞) in our notation. Given the above solutions, the equation for
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the azimuthal velocity component, W0, reduces to

W ′′
0 + Aξ2W ′

0 − 2AξW0 = 0, (3.29)

which can be solved in terms of confluent hypergeometric functions, to give

W0 = C1U
(
−2

3
,
2

3
,−Aξ

3

3

)
+ C2 exp

(
−Aξ

3

3

)
U
(

4

3
,
2

3
,
Aξ3

3

)
. (3.30)

Comparison of the shear stress values (at the boundary Θ = 0) obtained from
numerical results indicate that the constant A is positive. Therefore, the large-ξ
behaviour together with the no-slip boundary condition determine the constants C1

and C2 to be

C1 = −3
Γ
(

2
3

)
Γ
(

1
3

) , C2 = 0. (3.31)

Furthermore, as ξ → −∞ we have W0 ∼ −31/3Γ(2/3)/Γ(1/3)(−Aξ3)2/3, and the
expansion fails when εW 2

0 /ξ
2 = O(1), suggesting an outer layer needs to be considered.

3.3.2. Inviscid outer layer: Region II

This outer region is defined by the scaled coordinate η = ε1/4Θ = O(1), and we
introduce

Û = ε−1(Ū0(η) + · · ·), (3.32)

V̂ = ε−5/4(V̄0(η) + · · ·), (3.33)

Ŵ = ε−1(W̄0(η) + · · ·), (3.34)

B∗ = Ŵ 2
e + (S∗sing − Ŵ 2

e )B̄0(η) + · · · . (3.35)

Applying these expansions reduces the leading-order system to

Ū2
0 + V̄0Ū

′
0 − W̄ 2

0 = 0, (3.36)

2Ū0W̄0 + V̄0W̄
′
0 = 0, (3.37)

V̄0B̄
′
0 + Ū0(B̄0 − 1) = 0, (3.38)

2Ū0 + V̄ ′0 = 0. (3.39)

We can give an exact solution to this system,

Ū0 = C3 sin (C5η), V̄0 = −2C3

C5

[1− cos (C5η)], (3.40)

W̄0 = C3[1− cos (C5η)], B̄0 = 1 + C4V̄
1/2
0 , (3.41)

where C3, C4 and C5 are constants. Matching this outer-layer description with the
large-ξ form of the solution in region I leads to

C3 =
A

C5

, and C5 = 2
Γ
(

2
3

)
Γ
(

1
3

) ( 3

A

)1/3

. (3.42)

We note that C3 and C5 are both positive, implying C4 = 0 since V̄0 < 0.

3.3.3. Outer viscous layer: Region III

The expansion for region II fails when C5η = −2π, thus we obtain a further
viscous outer layer defined by the scaled coordinate Θ = −(2π/C5)ε

−1/4 + ζε1/4. In
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this region the expansions are equivalent to those presented for the inner viscous
layer (region I), and the resulting equations are also as given in (3.24)–(3.27). The
boundary conditions as ζ → +∞ are determined from the solutions of region II as
η → 2π. As noted by Bodonyi, there are two possible outer boundary conditions for
this region, corresponding to matching with the far-field solution (Û → 0, Ŵ → Ŵe,
B∗ → Ŵ 2

e ) or matching with a further inviscid outer region of the form described
above. In this way an arbitrarily large number of solution branches can be obtained.

We note that at this order the constant A is undetermined. For comparisons between
the asymptotic description and the numerical results it is sufficient to compute an
approximation to A by considering the shear stress components as S∗ → S∗sing .

3.3.4. The critical boundary S∗ = S∗sing(Ŵe, σ)

We can determine the critical value of S∗ (given Ŵe and σ) by continuing the analysis
of region I to next order. In particular, substitution of the relevant expansions into
the Û-momentum equation leads to

V ′′′1 + Aξ2V ′′1 − 2AξV ′1 + 2AV1 = 2(W 2
0 − S∗sing). (3.43)

Equation (3.43) has been considered by Bodonyi (1973), and we derive a similar
solution to this system with little alteration:

V1(ξ) = C6ξ
2 + 2ξ

∫ −ξ
0

∫ γ

0

exp

(
Aη3

3

)∫ η

0

x2(W 2
0 − S∗sing) exp

(
−Ax

3

3

)
dx dη dγ,

(3.44)
where C6 is a constant of integration. Differentiation of this expression leads to

V ′′′1 (ξ)

2
= W 2

0 (ξ)− exp

(
−Aξ

3

3

){
S∗sing − A

∫ −ξ
0

x2W 2
0 (x) exp

(
−Ax

3

3

)
dx

}
; (3.45)

therefore, since A > 0 and ξ ∈ [0,−∞), eliminating the exponentially growing term in
(3.45) provides a surprisingly simple extension to the result of Bodonyi (1975), namely

S∗sing =
9Γ2

(
2
3

)
Γ2
(

1
3

) ∫ ∞
0

U(− 2
3
, 2

3
, t) exp (−t) dt. (3.46)

The expression (3.46) shows that, in terms of the S∗, Ŵe parameter space, the
singular solutions are available along a line of constant S∗ = S∗sing ≈ 2.061; that is,

the critical value is independent of both Ŵe and the Schmidt number σ. Numerical
results showing the behaviour of V̂∞ as the critical value of S∗ is approached are
given in figure 14. The values of Ŵe and σ were arbitrarily chosen to demonstrate
that S∗sing is indeed independent of the other parameters.

It is also interesting to note the form of the profiles for B∗, which are uniform over
the majority of the boundary layer. In regions I and II, B∗ = S∗sing +O(ε), with a rapid

transition to the edge conditions (B∗ = Ŵ 2
e ) in a thin, O(ε1/4), outer viscous layer.

Figure 15 shows profiles of Ŵ and B∗ as S∗ → S∗sing; the outer viscous region (III) is
clearly seen in the otherwise uniform B∗-profiles.

As we have already noted, the solutions to the RDE are applicable to the more
general boundary-layer system along the parabola S∗ = Ŵ 2

e . This parabola intersects

S∗ = S∗sing at Ŵe = ±1.4355, at which points the B∗-profiles are uniform throughout
the whole domain and the above expansion reduces to the form given by Bodonyi
(1975).
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Figure 14. The singular solution branch as S ∗ → S∗sing . (a) A comparison between scaled
numerical results (solid lines) and the asymptotic result for region II (shown as data points
for clarity) as S∗ → S∗sing . (b) The behaviour of V̂∞ for varying S∗: (i) Ŵe = −1.4, σ = 5.

(ii) Ŵe = −0.5, σ = 1. (iii) Ŵe = −0.5, σ = 5. (iv) Ŵe = 0.5, σ = 5.

3.4. The limit V̂∞ → 0

DFH considered the readjustment of a linearly stratified fluid (in a conical container)
to an impulsively imposed change in the container rotation rate. The final result of
their analysis was that, at order-one values of the Schmidt number, the evolution
could be classified into three main types; the effect of higher values of σ was later
considered by HDDF. The boundaries that separate the evolution types in parameter
space were shown to be either explicitly known, obtained (numerically) from a reduced
asymptotic problem or determined by a stability analysis. Specifically, the boundary
that separated parameter values for which a steady state could be achieved from a
scenario involving a gradual thickening of the boundary layer was determined by
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Ŵe = −0.5 and σ = 1.

considering steady solutions with 0 < V̂∞ � 1. The growing boundary-layer regime
was found to be a preferred state only for parameter values to which the steady
state could not be extended, that is, for S∗ > S∗crit (in the DFH notation). Therefore,
boundaries beyond which solutions cannot be continued can be of some practical
importance both when considering time-dependent readjustment processes and when
choosing parameter values for experimental work.

The description of the boundary S∗crit is as follows. For a small perturbation about
the critical value of the form

S∗ = S∗crit + δ, (3.47)

we introduce the following expansion in a Θ = O(1) layer adjacent to the Θ = 0
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boundary:

{Û, V̂ , Ŵ , B∗}T = {0, 0, 1, 1}T + δ{U1(Θ), V1(Θ), W1(Θ), B1(Θ)}T + · · · . (3.48)

Substitution into the governing boundary-layer equations leads to the following system
for {U1, V1, W1, B1}T :

−2W1 = U ′′1 − B1, (3.49)

2U1 = W ′′
1 , (3.50)

U1(1− S∗crit) =
1

σ
B′′1 , (3.51)

2U1 + V ′1 = 0, (3.52)

with conditions U1(0) = V1(0) = B′1(0) = 0 and W1(0) = 1 on Θ = 0. Solution of
(3.49)–(3.52) leads to

V1 = −2C

{
E+

λ(1 + i)
− E−

λ(1− i)

}
− 2iC

λ
, (3.53)

W1 = iC

{
2

λ2
− 1

λ2
(E+ + E−)− 2λΘ

(
λ2 − 1

λ2

)}
, (3.54)

B1 = iC

{
2(E+ + E−)

[
λ2 − 1

λ2

]
− 4λΘ

[
λ2 − 1

λ2

]
+

4

λ2

}
, (3.55)

where C is a constant, E± ≡ exp [λ(1± i)Θ], and

λ4 = 1
4
[4− σ(1− S∗crit)]. (3.56)

For Θ → −∞ we observe that

U1 → 0, V1 → µ, W1 ∼ µΘ(λ4 − 1), (3.57)

where µ = −2iC/λ. As we noted in § 3.2, S∗ = 1 − 4/σ is a limiting value and
corresponds to λ→ 0 in the above description.

The large-|Θ| behaviour in this inner solution, together with the form of the
expansions (3.48) suggests an outer layer defined in terms of the scaled coordinate
Θ̃ = δΘ = O(1), in which the appropriate expansion is

{Û, V̂ , Ŵ , B∗}T = {δ2Ũ1(Θ̃) + · · · , δṼ1(Θ̃) + · · · ,
W̃1(Θ̃) + · · · , B̃1(Θ̃) + · · ·}T + · · · . (3.58)

The equations governing the leading-order solution in this outer layer are

W̃ 2
1 = B̃1, (3.59)

2Ũ1W̃1 + Ṽ1W̃
′
1 = W̃ ′′

1 , (3.60)

Ṽ1B̃
′
1 + Ũ1(B̃1 − S∗crit) =

1

σ
B̃′′1 , (3.61)

2Ũ1 + Ṽ ′1 = 0. (3.62)

This system has to be solved according to the conditions (3.57) at Θ̃ = 0 and Ũ1 → 0,
W̃1 → Ŵe and B̃1 → Ŵ 2

e as [sign (δ)Θ̃]→ −∞.
A subtlety of this expansion is that the constant µ can be set to unity by a suitable

redefinition of the quantities Ṽ1 and Θ̃ in the outer-layer description; however, the
sign of µ remains important when determining the appropriate solution domain. It is
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Branch-1: w0 = 1.0 w1 = −0.1542
Branch-2: w2 = −0.0983 w3 = 0.0571
Branch-3: w4 = 0.0565 w5 = −0.0442

Table 2. Some of the values Ŵe = wi for which rotating disk solutions exist with zero normal
velocity far from the disk.

only by comparing the above description with a numerical solution of the full system
that the sign of µ can be obtained and it is this that fixes the appropriate sign for δ
(in order to maintain a solution domain for which the outer solution is exponentially
decaying rather than growing). It is in this way that we can determine on which ‘side’
of the S∗crit boundary steady states can be located.

The outer-layer system (on setting µ = ±1 as appropriate) can be combined into
a single third-order system and solved by the application of a simple Runge–Kutta
method. Iterating on the value of S∗crit for a given Ŵe enables the edge conditions
to be satisfied; thus we obtain S∗crit(Ŵe, σ). For a sequence of numerical results
concerning S∗crit(Ŵe, σ) the reader is referred to the paper of HDDF.

Given the wide range of solutions that are available to the full governing boundary-
layer equations and the level of non-uniqueness it would be surprising if the above
analysis was the only |V̂∞| � 1 description. In fact, other expansions that lead to
different (S∗crit) boundaries in the (S∗, Ŵe) parameter space are possible.

The crucial feature of the expansion (3.48) is that, for the inner layer, V̂ = O(δ)
as Θ → −∞. In the case discussed above this is achieved because the leading-order
solution (3.48) in the inner layer is simply the trivial solution (Û = V̂ = 0, Ŵ =
B∗ = 1). This |V̂∞| � 1 description is non-unique since, rather than the expansion
(3.48), we can introduce a more general inner-layer expansion,

{Û, V̂ , Ŵ , B∗}T = {U0(Θ), V0(Θ), W0(Θ), w2
i }T + O(δ), (3.63)

where {U0, V0,W0} is a solution of the rotating disk equations with W0 → wi as
Θ → −∞, B∗ = w2

i a constant, and wi is such that V0 → 0 as Θ → −∞. It is well
known that there are an infinity of solutions to the rotating disk equations that have
zero axial flow; some typical values are given in table 2 (also see figure 2)

In this more general description, the critical value of the modified Burger number is
fixed to be S∗crit = w2

i for consistency of the inner-layer description. However, we note
that when i = 0 the corresponding rotating disk solution is the trivial state and in this
case the critical value of S∗ remains undetermined until the next-order inner layer is
considered and matched to a corresponding outer layer. In this case the derivation
reverts to that summarized above (3.47)–(3.62). For i 6= 0 the critical value S∗crit = w2

i

is independent of Ŵe; the outer layer in this case has the same scalings noted above
(3.58) and acts to adjust the solution to the appropriate edge behaviour.

In figure 16 we show some numerical results, obtained for the full governing
equations (1.1)–(1.6), for solution branches at Ŵe = −0.2,−0.5 and σ = 1, 5. Figure
16(a) shows the behaviour of V̂∞ as S∗ is decreased towards the value S∗ = w2

1 (given
in table 2); as predicted, V̂∞ approaches zero as S∗ → w2

1 ≈ 0.02378. Figure 16(b)
shows the behaviour of the stress component Û ′(0) at the disk and, in agreement
with the above inner-layer description for S∗ → w2

1 , we can observe that the values
approach that associated with the appropriate rotating disk solution, as displayed by
the horizontal line. Figure 17 shows profiles of the normal velocity component V̂ (Θ)
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(over an O(1) inner-layer scale) as S∗ → w2
1 ≈ 0.02378 for σ = 1. The figure clearly

shows the profiles approaching the limiting form of the rotating disk solution (shown
as data points for clarity).

In figure 16(a, b) we have also shown numerical results for Ŵe = −0.2 and σ = 15;
in this case the steady solution does not approach V̂∞ = 0 at S∗ = w2

1 since there is a
fold in the solution at a larger value of S∗. This must be the case at these parameter
values since examination of the outer-layer equations (3.58), (3.59)–(3.62) reveals
that

W̃1 ∼ Ŵe + w̃1 exp (c1Θ̃), (3.64)

Ṽ1 ∼ Ṽe + ṽ1 exp (c1Θ̃), (3.65)
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as Θ̃ → −∞, where

c1 = σṼe

(
3Ŵ 2

e + S∗

4Ŵ 2
e − σ(Ŵ 2

e − S∗)

)
. (3.66)

Therefore, there is a critical value of σ = σcrit ≡ 4Ŵ 2
e /(Ŵ

2
e − S∗), for Ṽe > 0,

S ∗ < Ŵ 2
e , above which an unacceptable exponential growth is obtained in the outer-

layer equations. We see that when Ŵe = −0.2, S∗ = w2
1 ≈ 0.02378 we should expect

to find no solutions with 0 < V̂∞ � 1 for σ > σcrit ≈ 10, which is in agreement with
the results of figure 11. For σ = 15 the solution branch folds and can eventually be
described by the above |V̂∞| � 1 description, but at a higher critical S∗ for which
exponential decay can be achieved in the outer-layer equations.

We have already noted that the critical boundary that is dependent on Ŵe (near
which the inner-layer behaviour is the trivial rotating disk solution) figures promi-
nently in the parameter-space diagrams used to interpret the unsteady spin-up read-
justment as presented by DFH and later confirmed experimentally by HDDF. It
could perhaps be argued that this is the case because it is the relevant boundary
for the dominant stable steady state. If this is so, then the additional boundaries at
S ∗ = w2

i as provided by a more general description of the |V̂∞| � 1 limit may be
associated only with states that are unstable and therefore of limited relevance to
the large-time unsteady evolution of spin-up/down flows. Such questions cannot be
addressed without a detailed stability analysis.

4. Discussion
We have considered axisymmetric steady states available within the boundary layer

on the inside of a rotating, conical container of swirling, linearly stratified fluid. We
have described how the steady states depend on the physical parameters governing the
relative rotation, strength of stratification and diffusivity properties of the fluid and
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have shown a remarkably complicated behaviour. Although the description of such
states has some inherent interest, our motivation for considering the system in such
detail is the hope that a full understanding of the steady phenomena will assist in a
continued theoretical/experimental analysis of the unsteady, nonlinear readjustment
mechanisms in spin-up (or spin-down, spin-over) problems. This analysis is also the
first step in a discussion of the spin-over parameter regime (Ŵe < 0).

We have presented a general analysis of the steady states through a combination
of numerical continuation methods and bifurcation analysis, together with asymp-
totic descriptions where possible. At general points within the parameter space we
have shown that it is possible to locate a large number of steady states, and that
continuation of these states can be complicated unless numerical approaches that can
effectively deal with repeated folding of the solution branch are utilized.

The stability of all the states described herein remains an open question. However,
in a recent experimental/theoretical investigation into spin-up of a stratified fluid in
a cone (HDDF), some of the non-unique steady states described in this work were
obtained numerically at parameter values that were open to laboratory investigation.
A numerical linear stability analysis of these states (though not exhaustive) suggested
that there is either none or at most one stable state in the region of parameter space
Ŵe > 0, S∗ > Ŵ 2

e . (Note that the higher-branch states of the rotating-disk equations
were shown to be unstable by Bodonyi & Ng 1984.) We have also shown that the
structure of the singular solutions to the rotating-disk equations can be extended to
provide similar solutions to the boundary-layer system we consider here. It is known
for the rotating-disk equations that the steady states become increasingly (linearly)
unstable as Ŵe is varied so that the singular solution is approached and we expect
a similar result can be obtained here. At parameter values that are less accessible to
laboratory experiments, HDDF showed that the stability analysis can be extremely
complicated with the eigenvalue spectrum arising from a linear stability analysis
having both discrete and continuous components which may lead to instability.
We should note that when referring to a state as linearly ‘stable’ we mean within
the framework of the similarity equations; there is no reason to assume that the
boundary-layer states are also stable to more general forms of disturbance.

Stability issues in the half-plane of parameter space Ŵe < 0 may be equally compli-
cated to address. Of particular interest in this case is that the unsteady boundary-layer
equations can show an evolution to a finite-time breakdown. It is of interest to de-
termine if this unsteady breakdown can be related to the absence of steady states, or
an instability of steady states.

The equations governing the swirling flow above a rotating disk are seen to be a
sub-class of the boundary-layer equations we have considered here. (Although for the
more general geometry the states are no longer exact solutions to the Navier–Stokes
system.) This has allowed us to use the well known solutions to the rotating disk
equations as a starting point for our more general boundary-layer system. Indeed,
many of the problems obtained by considering limiting cases have some relationship
to the rotating disk solutions.

Perhaps most importantly, we have shown that there is a range of steady states
to the stratified problem that can be traced back to the bifurcation of a (stratified
boundary-layer) solution branch from the rotating disk solution near Ŵe ≈ −0.1487
(for σ = 1). The presence of this branch ensures that steady states can be found at
general points in Ŵe < 0, S∗ > Ŵ 2

e . The local analysis of this imperfect bifurcation
also provides details of the fold structure of neighbouring solutions.

In the Appendix we give details of a closely related analysis showing the existence
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of an exact solution to the Navier–Stokes equation, which appears as the bifurcation
of a non-axisymmetric state from a rotating disk solution of von Kármán form.
In fact the similarity form of von Kármán is preserved for this new branch. The
presence of these non-axisymmetric states is prompting future work in the area of
non-axisymmetric boundary-layer solutions for a stratified fluid in a rotating cone.
The presence of non-axisymmetric flow during the transient response of a rotating
stratified fluid in a conical container has been reported previously in the experiments
of HDDF.

We should note that the details of an extension of the non-axisymmetric analysis
to the more complex boundary-layer equations we consider in the main body of
this paper are not trivial. In particular, we can consider the boundary layer on
the interior of a conical container filled with homogeneous fluid, which leads to
the same governing equations as those in the Appendix (A 5)–(A 7) but with the
transformation

∂

∂φ
→ 1

cos α

∂

∂φ
, (4.1)

where α is the angle of the cone walls to the ‘horizontal’. As an immediate consequence
the bifurcation at Ŵe = Wbif ≈ −0.14485 discussed in the Appendix is only present
when n/ cos α = 2, where n is an azimuthal wavenumber. Thus there is a bifurcation to
the n = 2 solution for the flat-disk case (α = 0) and a similar bifurcation to an n = 1
mode when cos α = 1/2. In fact, we have been unable to continue a generalization
of the non-axisymmetric solution to non-zero α in this problem. Nevertheless, the
existence of steady non-axisymmetric states, or even similar periodic states for a
conical/stratified flow configuration remains an open question, and is the subject of
ongoing work.

The support of the EPSRC is gratefully acknowledged.

Appendix. A bifurcation to non-axisymmetric von Kármán flows
An exact solution to the Navier–Stokes equations corresponding to the swirling

flow above a differentially rotating disk has been known to exist for some time.
Von Kármán (1921) first introduced the appropriate similarity form in the case of a
rotating plane in a stationary fluid.

We utilize a cylindrical polar coordinate system (r, φ, z) centred on the axis of
rotation of an infinite disk in a swirling fluid, with associated velocity components
(U,W,V ) and pressure P . A solution of the resulting governing system can be sought
with a radial dependence of the form first presented by von Kármán, while also
maintaining the dependence on the azimuthal coordinate φ:

(U, V , W )T = (rÛ(η, φ), E1/2V̂ (η, φ), rŴ (η, φ))T , (A 1)

P = r2Ŵ 2
e /2 + E Q(η, φ). (A 2)

Here E = ν/(Ωh2) is the Ekman number and η = E1/2z is a boundary-layer coordinate.
(We have tried to retain much of our previous notation, with η negative and Ŵe

denoting the ratio of the angular frequency of far-field fluid and disk.) The boundary
conditions are azimuthal periodicity, together with

Û = V̂ = 0, Ŵ = 1 on η = 0, (A 3)
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and

Û → 0, Ŵ → Ŵe as η → −∞, (A 4)

which are the usual axisymmetric boundary conditions for rotating disk flow.
For this general non-axisymmetric flow the Navier–Stokes equations can be reduced

under a boundary-layer approximation to the fifth-order system

Û2 + V̂ Ûη − Ŵ 2 + Ŵ Ûφ = Ûηη − Ŵ 2
e , (A 5)

2ÛŴ + V̂ Ŵη + ŴŴφ = Ŵηη, (A 6)

2Û + V̂η + Ŵφ = 0. (A 7)

These are the boundary-layer equations relevant to a non-axisymmetric flow above
a rotating disk. It is well known that the axisymmetric solutions to (A 5)–(A 7) also
form an exact solution to the Navier–Stokes equations; that is, although the solution
is of boundary-layer form there is no approximation. It will be shown below that
there is also a class of non-axisymmetric solution that form an exact solution.

The general system (A 5)–(A 7) was investigated by looking for a solution of the
form

(Û, V̂ , Ŵ )T = (U0(η), V0(η), W0(η))T + ε(Ũ(η), Ṽ (η), W̃ (η))T exp (iλφ), (A 8)

which leads to the (axisymmetric) rotating-disk equations at O(ε0) and an eigenvalue
problem at O(ε); here ε is some small perturbation parameter. The eigenvalue prob-
lem for λ can be solved numerically by computing the eigenvalues of an appropriately
discretized system via a QZ algorithm. Approaching the problem in this way allows
one to vary Ŵe, stepping along the branches to the O(ε0) rotating-disk problem, to
locate any critical values of Ŵe for which λ is an integer (to satisfy the azimuthal
periodicity condition). Computations of this sort suggest that at least one bifurca-
tion point exists, with the non-axisymmetric solution in the neighbourhood of the
bifurcation point having an azimuthal wavenumber of two.

Investigation of the bifurcation point using this numerical approach suggests that
the bifurcated solution has a rather special form (at least locally): the non-axisymmetry
is only introduced into the radial and azimuthal velocity components, and the solution
is of the form

Û(η, φ) = U0 +U1 cos(2φ), (A 9)

V̂ (η, φ) = V0, (A 10)

Ŵ (η, φ) = W0 −U1 sin(2φ). (A 11)

A consequence of this special form is that terms of the form e4iφ are never generated
and the solution described by (A 9)–(A 11) is an exact solution of the Navier–
Stokes equations corresponding to the nonlinear, non-axisymmetric flow above a
rotating disk. Although (A 5)–(A 7) were derived under a formal boundary-layer
approximation, the solution is exact for an azimuthal dependence of the form (A 9)–
(A 11) since the neglected terms of O(E/r2) in (A 5)–(A 7) cancel exactly. Furthermore,
it is straightforward to show that when V̂ is independent of the azimuthal coordinate
φ, the n = 2 solution is the only form for which the series terminates.

We note that this form of solution is similar to that considered previously by Hall,
Balakumar & Papageorgiou (1992), who discussed a class of flows associated with a
rotating disk in a fluid with a stagnation point flow at infinity. We shall make further
comments on the connection with this work later.
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To describe the bifurcation point we can introduce a perturbation

Ŵe = Wbif + ε, |ε| � 1, (A 12)

where Ŵe = Wbif is the critical value at which the bifurcation occurs and an expansion
of the form (A 9)–(A 11) can be introduced where

U0 = U∗0 + εU∗1 + · · · (A 13)

V0 = V ∗0 + εV ∗1 + · · · (A 14)

W0 = W ∗
0 + εW ∗

1 + · · · (A 15)

U1 = ε1/2u1 + ε3/2u3 + · · · . (A 16)

At O(ε0) we have the rotating disk equations for (U∗0 , V ∗0 ,W ∗
0 )T evaluated at

Ŵe = Wbif; obviously Wbif remains undetermined at this order.
At O(ε1/2) we obtain a linear eigenvalue problem for u1 of the form

2U∗0u1 + V ∗0 u
′
1 = u′′1 , (A 17)

where u1 = 0 at η = 0 and as η → −∞. We thus determine the critical parameter
value (numerically) to be

Wbif ≈ −0.14485, (A 18)

in agreement with the approach discussed above. We can therefore write

u1 = Aũ, (A 19)

where A is an amplitude measure that remains undetermined at this order, and ũ is
normalized so that ũ′(0) = 1.

At O(ε), as noted above, we only have the ‘mean flow’ terms and the solution can
be written as

(U∗1 , V
∗
1 , W

∗
1 )T = (U1H, V1H, W1H )T + A2(ũ2, ṽ2, w̃2)

T . (A 20)

The terms (U1H, V1H,W1H )T are the appropriate Taylor series corrections to the
rotating disk solution for a perturbation about the bifurcation point,

U1H =
∂U∗0
∂Ŵe

∣∣∣∣∣
Ŵe=Wbif

, V1H =
∂V ∗0
∂Ŵe

∣∣∣∣∣
Ŵe=Wbif

, W1H =
∂W ∗

0

∂Ŵe

∣∣∣∣∣
Ŵe=Wbif

. (A 21)

The terms (ũ2, ṽ2, w̃2)
T satisfy the inhomogeneous, linear system

L0(ũ2, ṽ2, w̃2)
T = (ũ2

1, 0, 0)T , (A 22)

2ũ2 + ṽ′2 = 0, (A 23)

with boundary conditions ũ2 = ṽ2 = w̃2 = 0 on η = 0 and ũ2 → 0, w̃2 → 0 as
η → −∞. HereL0 represents a linearized operator arising from a perturbation of the
axisymmetric form of (A 5) and (A 6).

At O(ε3/2) the governing system reduces to

2U∗0u3 + V ∗0 u
′
3 − u′′3 = −2(A[U1Hũ1] + A3[ũ1ũ2]). (A 24)

This system obviously requires that an orthogonality condition be satisfied and
therefore determines A through the amplitude equation

A(A2 − C) = 0. (A 25)

The amplitude of the bifurcated non-axisymmetric solution is A = ±C1/2, and A = 0
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corresponds to the usual axisymmetric rotating disk state. Here C can be determined
in terms of an integral involving ũ1, ũ2, U1H and the solution to the adjoint problem.
We note that the sign of the constant term C is obviously dependent (through U1H )
on the sign of the perturbation about Wbif; therefore we expect that the bifurcated
solution branch will only exist to one side of the critical value Ŵe = Wbif .

The full nonlinear system governing the unknowns U0, V0,W0, U1, as defined by
(A 9)–(A 11), is simply

U2
0 + V0U

′
0 −W 2

0 +U2
1 = U ′′0 − Ŵ 2

e , (A 26)

2U0W0 + V0W
′
0 = W ′′

0 , (A 27)

2U0 + V ′0 = 0, (A 28)

2U0U1 + V0U
′
1 = U ′′1 , (A 29)

with boundary conditions U0 = U1 = V0 = 0, W0 = 1 on η = 0 and U0, U1 → 0,
W0 → Ŵe as η → −∞. An investigation of this system has been performed using
the bifurcation and continuation package AUTO (Doedel & Wang 1995), the results
of which are shown in figure 18. Figure 18(b) shows the location of the bifurcated
solution branch for the non-axisymmetric states relative to the well known rotating
disk branches. Figure 18(a) shows the behaviour of an amplitude measure, U ′1(0),
for varying Ŵe. As noted above there is a square-root-like behaviour at Ŵe = Wbif;
however the Ŵe � 1 region appears to be more complicated. Numerical results
suggest the presence of a growing boundary-layer scale as Ŵe → 0−, and we have
been unable to continue the non-axisymmetric branch into the region Ŵe > 0.

A likely scenario for the limit |Ŵe| � 1 involves the development of a double
boundary-layer structure. In an inner layer (η = O(1)) adjacent to the disk the
velocity components remain O(1) with an algebraic decay of

U0 ∼ −3/η2, (A 30)

V0 ∼ −6/η, (A 31)

W0 ∼W00/η
2, (A 32)

U1 ∼ ±(9 +W 2
00)

1/2
/η2, (A 33)

as η → −∞, where W00 is a constant. The form of (A 30)–(A 33) together with the
edge conditions suggest an outer layer of the form

U0 = |Ŵe| Ũ0(η̃), (A 34)

V0 = |Ŵe|1/2 Ṽ0(η̃), (A 35)

W0 = |Ŵe| W̃0(η̃), (A 36)

U1 = |Ŵe| Ũ1(η̃), (A 37)

with a scaled outer-layer coordinate η̃ = |Ŵe|1/2η.

It is possible to make some comparisons between the predicted asymptotic form
of solution and numerical results obtained in the limit Ŵe → 0−. In particular,
the inner-layer behaviour described by (A 30)–(A 33) suggests that ηV (η) → −6 as
η → −∞; it is this quantity that is shown in figure 19(a). Similarly, (A 30)–(A 33) show
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V̂∞ = V0(η → −∞).

that (
W0

U0

)2

∼ W 2
00

9
, (A 38){(

U1

U0

)2

− 1

}
∼ W 2

00

9
, (A 39)

as η → −∞. The numerical results presented in figure 19 are consistent with these
predictions based on the algebraic decay of the inner layer, although we should note
that values of |Ŵe| ∼ 10−7 were necessary to resolve these features.

As we have already noted above, the form of solution (A 9)–(A 11) has been used in
a different context by Hall et al. (1992), who considered the unsteady problem for the
flow above a rotating disk with a stagnation point flow far from the disk surface. The
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relevance of their work to rotating disk flow was in a limiting case, namely that which
removed the presence of a stagnation point flow at infinity to leave the far-field fluid
stationary. Therefore, the problem was considered to be a nonlinear stability analysis
of the flow first considered by von Kármán, that is, the axisymmetric rotating disk
state at Ŵe = 0 in our notation. (No non-axisymmetric, steady states were located
by Hall et al. in the absence of the stagnation point flow.) The results of Hall et al.
showed that a threshold response was obtained leading to a finite-time singularity. It
is worth noting however that the description above suggests that Ŵe = 0 is a limiting
point for the non-axisymmetric states. It would therefore be of interest to consider
the stability of this branch, since if it were linearly stable, a nonlinear perturbation
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beyond the basin of attraction of the axisymmetric rotating disk states may simply
lead to these new states when Ŵe < 0 rather than a finite-time breakdown.
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